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SUMMARY 

Based upon the operator-splitting method designed by the authors to solve the Navier-Stokes equations with 
variable density and viscosity, a segregated time-marching solution scheme is proposed for solving the low-Mach- 
number flow model with the acoustic waves being filtered out. This solution scheme does not rely on the 
correction for global mass conservation to maintain solution accuracy. With this advantage the scheme can be 
directly applied to general low-Mach-number flow problems with confidence.The scheme is validated by 
comparing the results for a number of test cases with known limiting exact solutions and published numerical 
solutions by other authors. 
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1. INTRODUCTION 
Low-Mach-number compressible flows have a wide range of industrial applications, e.g. combustions, 
chemical reactions, natural convections. The numerical simulation of low-Mach-number flows is still a 
challenge to contemporary compressible flow algorithms. As is well l c n ~ w n , ' ~  time-marching 
compressible flow schemes become ineffective at low Mach numbers because of the wide disparity 
of time scales associated with convection and the rapid propagation of acoustic waves (or disturbances) 
which quickly contaminates the solutions and therefore reduces the stability of the scheme and destroys 
the convergence to steady state. 

In order to improve convergence and stability, one common approach is to use a modified 
compressible flow model (called the L-model in this paper) for the low-Mach-number case,335 which 
excludes acoustic waves by separating the pressure p into a thermodynamic part p~ which is spatially 
uniform and a hydrodynamic part p~ with P d  << p~ in the low-Mach-number case. The usual variable 
density model (called the V-model in this paper) and Boussinesq model (called the B-model in this 
paper) are particular cases of the L-model. 

The main purpose of this paper is to present a segregated time-marching solution algorithm for 
numerical solution of this modified model for low-Mach-number flows. This solution scheme does not 
rely on the correction for global mass conservation to maintain solution accuracy. With this advantage 
the scheme can be directly applied to general low-Mach-number flow problems with confidence, 
especially where such a correction is either impossible or unfeasible. The core of this algorithm is an 
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operator-splitting method designed by the authors for solving the Navier-Stokes equations with variable 
density and viscosity. The operator-splitting method is an efficient and robust method for solving the 
Navier-Stokes which enables us to decouple the difficulties in solving the Navier-Stokes 
equations, i.e. continuity constraints, non-linearity, coupling of velocity components, and the resulting 
subproblems can be solved by specially designed efficient solvers, e.g. a preconditioned conjugate 
gradient iterative solver. 

In Sections 2-4 we present the model equations. In Section 5 we describe the segregated time- 
stepping scheme. In Section 6 we describe in detail the operator-splitting method for solving the Navier- 
Stokes equations with variable density and viscosity. In Section 7 we present the results of some 
numerical tests and comparisons with known limiting exact solutions and published nunmerical 
solutions by other authors. These results clearly show the validity of our algorithm. The problem of 
global mass conservation is briefly discussed in Section 8. A rigorous numerical analysis of the 
algorithm or a systematic numerical study of low-Mach-number flow regimes like the one done by 
Chenoweth and Paoluccis is not the aim of this paper but will be the topic of future papers by the 
authors. 

2. GOVERNING EQUATIONS FOR LOW-MACH-NUMBER COMPRESSIBLE FLOWS 

In the low-Mach-number case the dissipation effect in the heat equation may be neglected. Consider the 
flow in N-dimensional space; assume the vertical (x3) axis pointing upward. Suppose the only body 
force is gravity. Then we have the following governing equations. 

Continuity equation 

DP - + + v . u  = 0. 
Dt 

Momentum equation 

p--C Dui N - (2pev-$pA6v)+-=-pgni ,  a aP i =  1 ,..., N ,  
Dt j=l axj axi 

where 

6 ,  is the Kronecker delta function and ni = di3. 
Heat equation 

(3) 

Equation of state 

p = RpT. (4) 

Remark 1 

In general the conductivity k and viscosity p are functions of temperature I: In this paper we assume 
they are of the Sutherland law  form^.^*^ For simplicity, in this paper we assume C, is constant. 
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Remark 2 

From equation (4) we have 

1Dp 1DT 1Dp 
p D t  T Dt p D t  

- +--. 
Combined with (l), it yields 

DP DT 
- + ~ V . U  = R p - .  
Dt Dt 

3. MODIFIED EQUATIONS FOR LOW-MACH-NUMBER COMPRESSIBLE FLOWS 

In the case of low-Mach-number flows the pressur p may be separated into a thermodynamic part pT 
which is spatially uniform and a hydrodynamic part pd, with pd << pT:335 

p(t; x) =PT(t) +Pd(t; x)- (7) 

Also, the equation of state (4) may be approximated by 

PT = RPT 

and Dp/Dt by dpT/ dt in equations (3) and (6). 
By integrating (6) over the flow domain R E rw", we obtain an ODE for pT: 

where meas(lR) is the volume of the flow domain R. 
In summary, we arrive at the following modified model (L-model) for low-Mach-number flows. 

Continuity equation 

2 + p v * u  =o. 
Dt 

Momentum equation 

Heat equation 

Equation of state 

ODEfor PT 

p 2 - C  DU. N - ( ( 2 ~ l e ~ - ~ ~ l h s ~ ) + - = - - p g n ~ ,  a aP d i =  1 ,..., N .  
Dt j=1 aXj ax, 
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Remark 3 

Since the dynamic pressure pd in the momentum equation is now not related to the density variation, 
this model does not contain acoustic waves. 

Remark 4 

Let pr be a representative density. Introduce 4 s.t. V4 is a unit vector in the direction opposite to 
gravity and introduce also 

Pd+=Pd + P r d  + $PA* 

Then, rewriting p: as Pd, the momentum equation (1 1) can be rewritten as 

p---E-- Dui ~t j= l  axj a [ p (E; -+- :)] + - = - ( p - p r ) g n i ,  aPd axi i = l ,  ..., N. (15) 

Remark 5 

@-model). 
Two special cases of the L-model are the variable density model (V-model) and the Boussinesq model 

Variable density model (V-model) 

when one is interested in the steady state only. Then the equation of state ( 1  3) reduces to 
In some cases, pT may be considered constant, e.g. (a) when the flow is open to the atmosphere or (b) 

where C = p T / R  is a constant. 
Let T, be a representative temperature and pr = p(Tr); then we have 

where /?, = l / T r  is called the thermal expansion coefficient. 
Note that when (T  - Tr)/T, c 1, equation (17) can be expanded into a Taylor series: 

P ( T )  = Pr(1 - BLT - Tr) + [BAT - T ~ ) I ~  - * .  -1- (18) 

In the heat equation (12) we now have dpT/dt = 0 and the L-model reduces to the following V-model. 

Continuity equation 

DP - + + v - u  =o. 
Dt 

Momenfum equation 

P - - E -  Dui a [ p (E; -+' E,)] +- apd = -(p - pr)gni, i = 1 , .  . . , N .  (20) 
~t j=l  axj hi 

Heat equation 
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Equation of state 

Boussinesq model (B-model) 

If the relative change in temperature is small, i.e. 

AT -<< 1, T 
then the density p can be considered as constant, i.e. p = p,. If we also take a first-order approximation 
to the buoyancy force in the momentum equation (20), then we obtain the Boussinesq model (B-model). 

Continuity equation 

Momentum equation 

v * u  = 0. 

Heat equation 

Equation of state 

p = pr = const. 

Note. In the conventional strict Boussinesq model the conductivity k and viscosity p are also 
considered to be However, in the extended Boussinesq model the conductivity k and 
viscosity p are allowed to vary with temperature, which leads to an enlarged range of validity when the 
fluid viscosity exhibits a relatively strong temperature dependence, e.g. for l iq~ids . '~* '~  

4. NON-DIMENSIONALIZATION 

Define the Rayleigh number Ra = BrdTprgL3/&a. Choosing U = (a,/L),/(RaPr) andpd,r = &,V/L, 
we have used the following scaling for the non-dimensionalization (quantities with a 'hat' are non- 
dimensional): 

L* 
xi = f i i ,  u = UQ, P d  = Pd.r$d 9 P = Pr?, = v" 

* WQ. 
T = T, + 6 ~ .  ?, P T  = P T , r h  P = l4ii k = kk, Q=,, 

The non-dimensionalized model equations are stated below (with the 'hat' being dropped). 
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(28) 
DP - + p v * u  = 0,  
Dt 

V-model 

DP - + p v - u  = 0, Dt (33) 

B-mOdel 

v * u  = 0,  (37) 

/(%)"-? Pr Dt j = l  " [ p ( 2 + 2 ) ]  ibj 
+ g = , / g ) T n i ,  i =  1 ,  ... N ,  (3 8) 

(39) 
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Remark 6 

RalPr = Gr is the Grashof number. The Sutherland law536 expressed in the above non-dimensio- 

Sk = 0.648, 

S, = 0.368. 

5.  SOLUTION BY SEGREGATED TIME STEPPING 

Define 

Introduce p* = J(Ra/Pr)p andp,*=RTpT. Then we may put the non-dimensionalized L/ V/B-models 
into the following general forms (with the ‘asterisk’ being dropped). 

Navier-Stokes equation 

v - u  = W(Z,u). (41) 

Heat equation 

Equation of state 

P = P ( P T ,  T). 

ODE for pT (for L-model only) 

Remark 7 

(a) 

(43) 

[ p = J(Ra/Pr) for B-model. 
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[ - [E + (u * V)Z] for L/V-models, 
Z =  l np  and W(Z,u) = 

0 for B-model. 

1 - [E + (u * V)Z] for L/V-models, 
Z =  l np  and W(Z,u) = 

I 0 for B-model. 

-( l/#?,ST)[p - J(Ra/Pr)]n, for L/V-models, I PTni for B-model. 
A =  

(46) 

(47) 

(d) For the V/B models the term QT/dt  on the RHS of (42) should be dropped and the ODE (44) is 

Let t" be the time at the nth step, At be the time step size andfR+q denote the value at t = t" + qAt of 
the function f (t). The segregated time-stepping scheme we propose for solving the non-dimensionalized 
models (40)-(44) for low-Mach-number flows is given below. 

not needed. 

From (T" , p" , k" , &, p" , 2" , u" , Pd} + (T"+', p"+', p{+"', pn+', Z"+', u"+', p\+'} as follows: 

1. Solve for T"+l the heat equation 

by either the fully implicit (backward Euler) scheme or the Crank-Nicolson scheme; u* here may 
be taken as U" or the extrapolation 2u" - u"-' for the Euler scheme or (3u" - u"-')/2 for the 
Crank-Nicolson scheme. 

2. Calculate p"+l = p(T"+') and k"+' = k(T"+'). 
3. (For L-model only.) Solve for p;+' the ODE (44) by either the l l l y  implicit (backward Euler) 

scheme or the Crank-Nicolson scheme. Let 

P denotes T"+' for the Euler scheme and (T"+' + T")/2 for the Cranl-Nicolson scheme; u* is 
defined as above. Thefilly implicit scheme is 

The Crank-Nicolson scheme is 

4. Calculate pn+' = pep"+', T"+' ) an d Z"+' = In pn+'. 
5.  Calculate pn+'lz = i(p"+' + p") and Zn+1,2 = In pn+'12, 
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6. Solve for {u"+l,p;+') the following Navier-Stokes equation with variable density and viscosity 
by the operator-splittmg method (which is the topic of Section 6): 

where 

-[(Z"+I - Zn)/At + (u - V)z"+'f2] for L/V-models, 
(53) I 0 for B-model. 

W(Z"+'/2, u) = 

J(Ra/Pr)]nj for L/V-models, 
(54) 

for B-model. 

Remark 8 

In the case of closed flow the global mass is conserved. However, the discrete solution p;+' of the 
above step 3 does not in general preserve exact global mass conservation, although the deviation is small 
and is consistent with the discretization error of the solutions (see Section 8 for a discussion on this 
problem). The numerical results in Section 7 also show that the solutions are not sensitive to this small 
deviation from global mass conservation. Nevertheless, if we want, we can optionally apply a correction 
top;:' to maintain exact global mass conservation. Denote the discrete solutionp;+' of the above step 3 
by pT ; then the correction can be done in the following steps. 

(i) Calculate the initial mass 

i@ = IQ po dx = ,/(Ru/Pr)meus(fZ). 

(ii) Compute 

(iii) Compute the correction Ap by 

(iv) Reset p;+' = p;+Ap. 
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6. SOLUTION OF NAVIER-STOKES EQUATION WITH VARIABLE DENSITY AND 
VISCOSITY BY OPERATOR SPLITTING 

6.1. Navier-Stokes equation with variable density and viscosity; its variational formulation 

The operator-splitting method is an efficient and robust method for solving the Navier-Stokes 
equationsY8-” which enables us to decouple the difficulties in solving the Navier-Stokes equations, i.e. 
continuity constraints, non-linearity, coupling of velocity components, and the resulting subproblems 
can be solved by specially designed efficient solvers, e.g. a preconditioned conjugate gradient iterative 
solver. In this section we extend the operator-splitting method to meet the needs of solving the Navier- 
Stokes equation with variable density and viscosity, which is the major step in the segregated time- 
marching solution algorithm of Section 5. For the convenience of describing the operator-splitting 
method, we consider the following general form of Navier-Stokes equation (N-S) with variable density 
and viscosity (of which (51), (52) is a special case): 

v u = W(u), (56) 

where p = p(x) and p = p(x) are known functions of x and W(u) is a known hc t ion  of u. 

(BCs). 
Let R be the flow domain and r its boundary. We will consider two types of boundary conditions 

(a) BCl (enclosed flow): 

(b) BC2 (open or partly open flow): 

u = g  onr , ,  

where To U rl = r. 
Let LZ(R) be the Hilbert space of square integrable functions defined over R, H1(R) be the Hilbert 

space of functions with integrable first-order derivatives and (HI be the space of N-dimensional 
vector functions each of whose components belongs to H1(R). For each of the different types of 
boundary conditions above we define different functional spaces as follows. 

(a) For BC1: 

m = ( q , q € L * ( R ) ,  fn q d x = o  I . 
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(b) For BC2: 

Then the equivalent variational problem (VP) of (N-S) with BC2 type of BC can be stated as follows, 
Find u E 5 , p  E L'(S2) s.t. Vv E 6, Vq E L2(t2), 

Remark 9 

The variational formulation for BCl type of BC is obtained by dropping the line integral term on the 
RHS of (57). 

6.2. Operator-splitting 

step into the following three fractional steps. 
Let 8 E (0, i) and a, /l E (0, 1). The operator-splitting (04) scheme for (57), (58) divides each time 

First fictional step 

Find u"+' E VF+o,pn+' E t2(0) s.t. W E 6, Vq E ,?,'(a), 

v ' un+eq dx = W(u")q dx. S* S* 
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Second jkctional step 

Find u"+'-~ E V&-, s.t. Vv E G, 

+ J,, v dT. 

Remark 10 

For the linearized &S scheme the third term on the LHS of (61) should be replaced by 

Third fractional step 

Find u"+l E VF+, ,pn+' E L 2 ( Q  s.t. Vv E Yo, Vq E L2(sZ), 

1, v * un+lq dx = 1, W(u"+'-@)q dx. 

The subproblems at the first and third fractional steps are of the type of steady quasi-Stokes problem 
(QS) with variable density and viscosity. Find u E V g , p  E L2(Q) s.t. Vv E V,, Vq E (a), 

ao j ,  pu*vdx+1,  plVu-Vvdx-B J, pV.vdx= J, f -vdx ,  (64) 

1, V * u q d x = / ,  Wqdx, (65) 

with ct0 = l / A t  and p, = aep. 

problem (DC). Find u E "g s.t. Vv E G, 
The subproblem at the second fractional step is of the type of (non-linear) diffusion-convection 

a0 J, pu . vdx + J,, p*vu. vvdx + b" p(u * V)u * vdx - b, 

(66) 
with b, = 1 - 28 and p2 = /3b,p. 
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A good choice of 8 is 1 - 1/,/2; a and fi can be chosen s.t. p1 = p2 so that both subproblems have 
the same part of the Helmholtz operator, which will give the same matrices in discretizations. 

The subproblems (QS) can be solved by a preconditioned conjugate d e n t  (CG) method. The 
subproblem (DC) can be reformulated as a least squares problem and solved by a preconditioned 
conjugate gradient method. 

6.3. CG scheme for QS 
The steady state quasi-Stokes problem (64), (65) is a special case of the following general 

stead' quasi-Stokes problem (QS) with variable density and viscosity. Find u E 5, 
p E L2(Q) s.t. vv E Yo, vq E L2(Q), 

vvu.vvdx-Jln pV.vdx = jnf .vdx, (67) 

where a is a constant, p, v and Ware known functions of the space co-ordinates x and f is a known vector 
function of x. This problem (QS) can be solved by the following preconditioned conjugate gradient 
iteration scheme. 

Step 0. Initialization 

(I) po E L*(Q) given. 
(2) Solve for uo E rg s.t. vv E 6, 

(3) Solve for QO E x s.t. Vq E ~~(n) ,  

(4) Solve for @' the Poisson equation 

-A@' = p ,  
with BCs 8Do/& = 0 on To and @' = 0 on rl. 

Remark I1 

condition Jn @' dx = 0. 
For BCl type of boundary condition the BC here should be replaced by m0/& = 0 on r, plus the 

( 5 )  Set go = mean(u)@ + a meun(p)@', where mean( ) = Jn * dx/meas(Q). 
(6) Set wo = go. 

Then for n 2 0, with p", u", g" and w" known, obtain pn+', u"+', g"+' and w"+l as follows. 
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Step 1. Descent 

(7) Solve for x" E % s.t. Vv E 6, 

(8) Compute 

(9) Set pn+' = p" - pnw" and u"+' = u" - pnx". 
(10) Solve for Q"+' E 2 s.t. Vq E ~*(!2), 

(1 1) Solve for @"+' the Poisson equation 

with BCs mfl+'/an = 0 on To and @"+I = 0 on rl. 

Remark 12 

condition Jn W"" dx = 0. 
For BC1 type of boundary condition the BC here should be replaced by a@"'' /an = 0 on I?, plus the 

(12) Set g+' = mean(u)Q"+' + CI mean@)@"+'. 
(13) Test convergence: if sn Q"+'g"+' dxG6,  take p =pflf' and u = u"+' and stop iteration; 

otherwise go to (14). 

Step 2. Construct new descent direction 

(14) Compute 

(15) Set w"+' = f+' + yn#. 
(16) Do n := n + 1, go to (7) and repeat the process. 

6.4. CG scheme for NL 

convection problem (DC) with variable density and viscosity. Find u E "g s.t. Vv E %, 
The diffusion-onvection (66) is a special case of the following general non-linear diffusion- 

.J1, Pu.vdx+jn uVu*Vvdx+b, p(u.V)u.vdX-b, (Vu,).(v.V)udx= J, J, In  
f-vdx, 
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where a and b, are constants, p, u and uo are known functions of the space co-ordinates x and f is a 
known vector function of x. 

Remark 13 

For the linearized 0 - S  scheme the third term on the LHS of (69) should be replaced by 

where z is a known vector function of x. In the following discussions the corresponding changes will 
also be needed. 

Define the scalar product in % (and 6) as 

Define y = y(u) E *yo s.t. 

a 1, PY ' V  dx + J, uvy - v v  dx 

Define on "g the functional 

Then @C) is equivalent to the following least squares problem (LS): 

find u E "g s.t. f(u)<$(v) Vv E "g. (73) 

This least squares problem (LS) can be solved by the following preconditioned conjugate gradient 
iteration scheme 

Step 0. Initialization 

(1) uo E 5 given. 
(2) Solve for go E % s.t. vv E *yo, 

(3) Set wo = go. 

Then for n 2 0, with u", g", w" known, obtain u" + I ,  f+', w"+l as follows: 

Step 1 .  Descent 

(4) Find qn E R s.t. %(u" - q,w")<f(u" - qw"), Vq E R, where R is the space of all real 

(5 )  set u"+I = u" - qnw". 
numbers. 
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(6) Solve for g"+' E 6 s.t. Vv E 6, 

(7) Test convergence: if ,#(u"+') < 6, take u = un+' and stop iteration; otherwise go to (8). 

Step 2. Construct new descent direction 

(8) Compute 

(9) Set #+I = gn+' + ynw". 
(10) Do n := n + 1, go to (4) and repeat the process. 

Remark I4 

A simple perturbation analysis shows that 

+bn J, p(v.V)u.ydx-bn ( V U , ) . ( ~ - V ) V ~ X .  J, (74) 

Remark I5 

Let $ = y(u" - qw"); then we have 

The function f(u" - qw") is a quartic polynomial of q. Therefore its minimization reduces mainly to 
finding the root of a cubic polynomial by Newton's method. 
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7 .  NUMERICAL RESULTS 

8.1. Comparison with exact limiting solution 

Consider the natural convectin of a perfect gas in a vertical slot of width L and height H with left and 

the Rayleigh number Ra be as defined in Section 4. Chenoweth and Paolucci6 derived the exact velocity 
and temperature profiles of a fully developed one-dimensional flow which exists in the mid-region of the 
vertical slot when Ra < Ra, and the aspect ratio A = H / L  > A d .  For the Prandtl number Pr = 0-7 1 and 
0 < E = 6T/2Tr < 0.6 they stated that 

right Wall temperatures Th and T, respectively, where Th > T,. Let T, = (Th + T,)/2, 6T = Th - T, and 

Ra, * 8 x 103Pr(l - c3) ,  A d  * (2 + Ra/400)/(1 - e3).  

In order to verify our solution algorithm, we have compared our numerical results with the exact 
solution data for the two test cases below. Note that all the quantities appearing in the figures and tables 
of this sectin are non-dimensional with the scaling given in Section 4, except that quantities in Tables I 
and I1 are in the same scaling as used in the figures of Chenoweth and paolucci.6 Note also that the exact 
solution data in Tables I and I1 are obtained by measurements from the figures of Chenoweth and 
Paolucci.6 In the non-dimensional co-ordinates (x, y) the flow domain is a rectangle [0, 11 x [0, A]. In 
Tables I and I1 the critical point x-co-ordinates XI, Xo , X and X, on the mid-section y = A / 2  are defined 
as follows: Xl-where T = 0; Xo-where velocity y-component uy = 0; X,--where uy = u,,,; X,,- 
where uy = uY,-. 

Test Problem 1 

As the first test case, we choose E = 0.6, A = 10, Ra = lo3,  Pr = 0.71 and T,. = 300 K and consider 
a closed slot, i.e. with both ends closed. Both solutions of the L-model with correction to pi+;;" for mass 
conservation (denoted by A-sln.) and without correction (denoted by B-sln.) are shown in Table I and 
Figures 1 and 2. A graded mesh of 720 rectangular elements with 2305 nodes (see Figure 14(a)) is used 
for this problem. Without correction top;+' the resultant deviation from mass conservation is less than 
0.8%. Table I and Figures 1 and 2 show that the solution is not sensitive to this small deviation. The 
difference between the two solutions is less than 0.8%. Compared with the exact solution, both solutions 
are quite accurate, with errors less than 2%, which is smaller than the difference of 3% between the exact 
solution and the numerical Navier-Stokes solution reported by Chenoweth and Paolucci.6 Note that the 
relatively larger error of 1.4% in X, is due to the linear interpolation used in the velocity profile (Figure 
1). A quadratic interpolation will give X, = 0.8792, with a smaller error of 0.7%. 

Table I. A-sln.-with correction to &+' ; B-s1n.-without correction 

Exact sln. A-sln. B-sln. Error in B DifF. of A, B 

0.6360 0.6374 0.6374 0.2% 0.0% 
XO 0.6360 0.6374 0.6374 0.2% 0.0% 
4 

0.2900 0.2894 0.2894 0.2% 0.0% 
0.8730 0.885 1 0.8851 1.4% 0.0% XP 
0-0922 0-098 1 0-0974 1.8% 0.7% 

x* 
UY,llMX 
~,,min -0.0938 -0.0927 -0.0920 1.9% 0.8% 
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1 . l l I O l  l . 1 0 0 1 0  l . l O 0 0 1  0 . O I O O  I . b O I I 0  l . 1 1 0 1 0  

C l . ~ O I . . , l  

Figure 1. Velocity profile along y = 5: full curve, with correction to &+' ; points, Without correction 

Test Problem 2 

As the second test case, we consider an open slot, i.e. with both ends open, and choose 
E = 0.6, A = 10, Ra = lo3, Pr = 0.71 and T, = 300 K, the same as in the first case. In this case we 
no longer have global mass conservation. The exact solution of Chenoweth and Paolucci6 for this open 
slot is valid under the assumptionpT = 1; thus the V-model should be used. The same mesh as for the 
first case has been used for its solution. Table I1 compares the V-model solution with the exact solution 
and shows very good accuracy, with errors substantially smaller than the difference of 3% between the 
exact solution and the numerical Navier-Stokes solution reported by Chenoweth and Paolucci.6 Note 
also that the relatively larger error of 1.4% in X, is again due to the linear interpolation used in the 
velocity profile (Figure 3). 

Figures 3 and 4 show the velocity and temperature profiles along the mid-section y = 5 .  Note that the 
profiles shown by Figures 1-4 are very close to those of Chenoweth and Paolucci.6 The above 
comparision of our results with the exact solutions for the two test cases clearly validates our solution 
algorithm for the L/v-models. In particular, our algorithm, unlike some other algorithms, e.g. that of 
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Table 11. V-sln.-solution of V-model 

8 .01 , .  - 

..,..,. - 
,111 

* . # 8 1 # #  . 

... ,#*.a ~ 

.#.I*,## - 

.I I.... , 

Exact sln. v-sln Error in V-sln. 

XI 0.63600 0.63740 0.2% 
0.63600 0.63740 0.2% 
0.29000 0.28940 0.2% 

x, 
0.87300 0.88510 1.4% 
0.09846 0.09845 0.01% U Y W  

UY.lIliO -049615 -049618 0.03% 

2 

\ 

Chenoweth and Paolucci: does not rely on the correction to &+I for global mass conservation to 
maintain solution accuracy, so it can be applied to more general cases where such a correction is either 
impossible or unfeasible. Especially in the case where global mass conservation no longer holds, 
algorithms depending on such a correction to maintain solution accuracy cannot be used safely, but our 
algorithm can still be directly applied with confidence. 

Figure 3. Velocity profile along y = 5 

1 ,  
I 8#*88 e I#,#* *.. l8*8 ,.1#.#8 8.1181. t.6.8.. 

t*.1,,,11# 

Figure 4. Temperature profile along y = 5 
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1.1 

Figure 5. Velocity fields: (a) 
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L-model; @) Chenoweth and Paolucci5 

7.2. Comparison with known numerical results 

Test Problem 3 

We consider a closed square (A = 1) with E = 0.6, Ra = lo6, Pr = 0.71 and T, = 300 K and 
compare our L-model solution with that of Chenoweth and Paolucci.' Figures 5(a) and 5(b) show the 
velocity fields by our L-model solution and Chenoweth and Paolucci's respectively. Figures 6(a) and 
6(b) show corresponding isotherm fields. Figure 7 shows the streamline plot of our L-model solution. 
Figure 8 shows the graded mesh of 576 rectangular elements with 1825 nodes used for this problem. 

Figures 5 and 6 show that our solution is very close to that of Chenoweth and Paolucci. Both solutions 
have very similar asymmetry. There is a very pronounced shift of the primary vortex both towards the 
cold wall and downwards towards the lower end of the cavity. From Figures 5 and 7 we also see the 
appearance of two weak secondary vortices inside the primary roll as observed by Chenoweth and 
Paolucci.' The reason for the appearance of this asymmetry and the secondary vortices has been 
explained by Chenoweth and Paolucci.' 

(4 lb) 

Figure 6. Isotherm fields: (a) L-models; (b) Chenoweth and Paolucci' 
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Figure 7. Stream l i es  of L-model solution 

Test Problem 4 

To validate the B-model solution (i.e. the Boussinesq case), we consider the same geometry as for the 
third test problem, with Pr = 0.71. Our B-model solutions are compared with FIDAP’s (FIDAP is a 
well-known commercial finite element CFD package which has a steady state Boussinesq solver using a 
fully coupled method). The same mesh as in Figure 8 is used both for our B-model solution and for 
FIDAP’s. 

Figures 9(a) and 9(b) show the streamlines by our B-model solution and FIDAP’s respectively for the 
case of Ra = lo6 and T, = 300 K. Note that both solutions predict the same maximum streamfunction 
value of 0.01990. Figures lO(a) and lO(b) show the corresponding isotherm fields. 

Note that a benchmark solution by de Vahl Davis’ based upon the Boussinesq model for Ra = lo6 
and Pr = 0.71 has an average Nusselt number of 8.798 along the hot wall. Our B-model solution has an 
average Nusselt number of 8.824, which is a very good prediction, with an error less than 0.3%. The 
FIDAP solution has an average Nusselt number of 8.893, which, with an error of 1.1%, is slightly less 
accurate than our B-model solution. 

Figure 8. Mesh forRa= lo6 andA= 1 
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(4 (bl 

Figure 9. Streamlines for Ra = lo6: (a) B-model; (b) FIDAP 

Listed in Table I1 are the average Nusselt numbers along the hot wall for three different cases 
predicted by FIDAP, our B-model and our L-model. Note that T, = 325 K is used for all three cases. 

Figures 9 and 10 and Table 111 show clearly that our B-model solutions are almost identical with 
FIDAP's solutions. Our B-model solution is clearly validated by the above comparison results. Table 111 
also indicates that the B-model solution is close to the L-model solution when the relative change in 
temperature 6T/Tr = 2.5 is below about 25%. This is consistent with the statement by Gray and 
Gi~rgini '~  that the Boussinesq model is a valid approximation to low-Mach-number air flows if the 
relative change in temperature 6T/Tr = 2.5 d 0.1. 

Table 111. Average Nusselt number along hot wall: NuF, FIDAP; NUB, B-model; NuL, L-model 

Diff. of NU,, NUB Diff. of NUB, NuL Ra E NUF NUB NUL 
1 o4 0.013 2.245 2.245 2.237 0.00% 0.36% 
1 o5 0.130 4.527 4.522 4.358 0.1 1% 3.76% 

29.86% 1 o6 1.300 8.893 8.824 6.795 0.78% 

(4 (b) 

Figure 10. Isotherm fields for Rn = lo6: (a) B-model; (b) FIDAP 
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According to our numerical tests, taking a constant starting value, FIDAP fails to reach a solution for 
Ra = lo6 owing to divergence of the iterations. This indicated that FIDAP's solver has a smaller 
convergence radius than our algorithm. In order to obtain the solution for Ra = lo6, FIDAP has to 
perform a sequence of solutions for Ra = lo3, lo4, lo5, lo6 and take the solution for lower Ra as the 
starting value for the solution for higher Ra. Such a solution procedure can become computationally 
very expensive when the problem size increases, especially in 3D case. 

Test Problem 5 

As in the first test problem, we consider a closed slot with the E = 0.6, A = 10, Pr = 0-71 and 
T, = 300 K, but with Ra = lo5. A graded mesh of 2160 rectangular elements with 6709 nodes (see 
Figure 14(b)) is used for the problem. 

Based on their numerical results, Chenoweth and Paolucci' reported that when the aspect ratio A 
increases from 7 to 10, the flow regime changes from having a single primary roll at the steady state to 
having two vortices, one centred at y = 5.5 and the other at y = 2.5. However, our numerical results 
show that up to A = 10, although there is a second vortex appearing during the transition to steady state, 
the flow returned to a steady state with a single primary roll (see Figures 11 and 12). This disagreement 
between our results and Chenoweth and Paolucci's indicates that the conclusion of such a transition of 
the flow regime needs more physical proof Chenoweth and Paolucci's finding may have resulted from 
the lack of convergence to steady state of their numerical scheme. Their scheme is less implicit in nature 
than our algorithm and therefore less stable than our scheme in terms of the ability to damp out errors. 
This may cause the convergence to steady state to be slow or even impossible. 

(a) (I) 

Figure 1 I .  Velocity fields: (a) with correction top;"; (b) without correction 
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Figure 12. Streamlines: (a) with correction to&+'; 0) without correction 

Figures 1 l(a)-13(a) show the velocity field, streamlines and isotherm field respectively of the solution 
of our L-model with correction to p;+' for global mass conservation and Figures 1 1 (b)-l3(b) show the 
corresponding results without correction. It is clearly seen that the two solutions are almost identical. 
This again proves that our solution algorithm does not rely on the correction to p:" for global mass 
balance to maintain solution accuracy. In fact, without correction the deviation from global mass 
balance is less than 0.35%. Table IV shows that the difference between the two solutions is also less than 
0.35%. 

8. A BRIEF DISCUSSION ON GLOBAL MASS CONSERVATION 

In the case of closed flow, global mass should be conserved. When one adopts the approach of filtering 
out the acoustic waves by separating the pressure p into a thermodynamic part pT which is spatially 
uniform and a hydrodynamic part p d ,  the conservation of global mass has always been a concern, 
because the density calculated from the discrete solution of temperature and pT does not in general 
satisfy the constraint of global mass conservation. Some authors, e.g. Chenoweth and Pa~lucci ,~ use a 
correction to p;+' to maintain the exact global mass balance and hence the accuracy of the discrete 
solution. However, such a correction is not always feasible or even possible for general flows; in 
particular, global mass conservation no longer holds in the case of open flows. Algorithms depending on 
such a correction to maintain solution accuracy cannot be used safely for such general flow problems. 
For general applications, what we need is an algorithm which does not rely on such a correction but still 
maintains good solution accuracy for both closed and open flow problems. Our algorithm is indeed such 
a generally applicable algorithm. 
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(4 (b) 

Figure 13. Isotherm fields: (a) with correction top;''; (b) Without correction 

A rigorous numerical analysis of our algorithm will be the topic of future papers by the authors. Here 
we would just point out that, locally, the discrete solution of density by our algorithm is consistent with 
the continuity equation, or in other words, the discrete density satisfies the continuity equation within 
the local truncation (or discretization) error of the discrete continuity equation. This consistency and the 
stability of the algorithm guarantee that the deviation from mass balance is within the discretization 
error and will not grow and that the discrete solutions will converge to the exact solution when the mesh 
size and time step size are reduced. Globally, without correlation top;+', the deviation from global mass 
conservation satisfies the relation 

(p"" - p")[ l  + O(At)] dx = 0. I* 
Therefore, as long as the time step size At is reasonably small, the deviation from global mass 
conservation is negligible and the accuracy of the solutions will not be affected by this amount of 
deviation. In fact, for the numerical experiments in the previous section the time step sizes used are 

(a) At = 1.0 forA = 10, Ru = lo3 
(b) At = 0.2 for A = 10, Ru = lo5 
(c) At = 0.5 for A = 10, Ru = lo6 

Table IV Steady state values of pT and $ (maximum value of streamfunction): 
A-sh-with correction to p;+TB-sln.--without correction 

A-sln. B-sin. Diff. of A, B 

P T  0.9568 
*Inax 0,1476 

0.9538 
0.1478 

0.31% 
0.14% 
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(4 (b) 

Figure 14. Meshes for A =  10: (a) for Ru = 10'; (b) for Ru = lo5 

which are not that small at all in practice. The good accuracy of the solutions by our algorithm has been 
proved by the numerical results in the previous section for both Boussinesq and nonBoussinesq cases. 

APPENDIX: NOMENCLATURE 

CP 
C" 

k, 

g 
k 

L 
P 
Pd 
PdJ 
PT 
P T J  
Pr 
Q 
R 
T 
TI 
U 
U 

specific heat when pressure fixed 
specific heat when volume fixed 
gravity 
heat conductivity 
reference conductivity 
reference length 
pressure 
hydrodynamic part of p 
reference dynamic pressure 
thermodynamic part of p 

p r C p / ~ ,  F'randtl number 
volumetric heat source 
Cp - C,, gas constant 
temperature 
representative temperature 
velocity vector 
reference velocity 

R P J I  
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Greek letters 
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% 

Y 
6T 
c1 
PI 
P 
P* 

Br 

kJprCp, diffusivity 
1 /Tr, thermal expansion coefficient 
Cp/Cv, equals 1.4 for air 
temperature variation scale 
molecular viscosity 
reference viscosity 
density 
representative density 

Miscellaneous 

V gradient operator 
D/Dt = a/at + u - V, total time derivative operator 
v * w scalar product of v and w 

REFERENCES 

1. W. Aung, ‘Developing laminax free convection between vertical flat plates with asymmetric heating’, Int. 1 Heat Mars 

2. W. R. Briley, H. McDonald and S. J. Shamroth, ‘A low Mach number Euler formulation and application to time-iterative LBI 

3. Y Horibata, ‘Numerical simulation of a low-Mach-number flow with a large temperature variation’, Comput. Fluids, 21,185- 

4. C .  L. Merkle and Y. H. Choi, ‘Computation of low-speed flow with heat addition’, AM J, 25,831-838 (1987). 
5. D. R. Chenweth and S. Paolucci, ‘Natural convection in an enclosed vertical air layer with large horizontal temperature 

6. D. R. Chenoweth and S. Paolucci, ‘Gas flow in vertical slots with large horizontal temperature differences’, Phys. Fluids, 28, 

7. G. de Vahl Davis, ‘Natural convection in a square cav i ty4  bench mark solution’, Int. j .  nurner. methodsfluids, 3,249-264 
(1983). 

8. E. Dean, R. Glowinski and C. H. Li, ‘Application of operator splitting methods to the numerical solution of nonlinear 
problems in continuum mechanics and physics’, in J. Goldstein, S. Rosecrans and G. Sod (eds) Muthemufics Applied to 
Science, 1988. 

9. E. Dean, R. Glowinski and C. H. Li, ‘Supercomputer solutions ofpartial differential equation problems in c o m p u ~ o d  fluid 
dynamics in control’, Comput. Phys. Commun., 53,401439 (1989). 

10. C. H. Li, ‘Numerical solution of Navier-Stokes equation by operator splitting’, Proc. Sixth Int. Conf in Atlrhalia on Finite 
Element Methods, Vol. 1, 1991, pp. 205-214. 

11. C. H. Li, ‘Numerical simulation of flow past a circular cylinder by operator splitting, Tech. Rep. DMS-C 91/11, 1991. 
12. C. H. Li, ‘On the numerical simulation of incompressible viscous flow by operator splitting’, Tech. Rep. DMS-C 91/12,1991. 
13. D. D. Gray and A. Giorgini, ‘The validity of the Boussinesq approximation for liquid and gases’, Int. d Heat Mars %mfw, 

14. D. K. Gartling and C. B. Hickox, ‘A numerical study of the applicability of the Boussinesq approximation for a fluid sahuated 

Tmnsfer, 15,2293-2308 (1972). 

schemes’, A M  d ,  21, 1467-1469 (1983). 

200 (1 992). 

differences’, J; Fluid Mech., 169, 173-210 (1986). 

2365-2374 (1985). 

19,545-551 (1976). 

porous medium’, Int. j .  numm methodsfluids, 5,995-1013 (1985). 


